Wednesday, May 8, 2013

Omega-3 Fats - Building Block of Brain and memory


Omega-3 Fats
Building Block of Brain and memory
Omega-3 Fats- Reversing Many Aspects of Neurologic Aging
The cardio protective power of omega-3 fatty acids has been thoroughly documented in clinical literature. Less well known is their paramount role in optimizing many facets of brain function, from depression, cognition, and memory to mental health.
Recent research has opened up a new horizon in our understanding of omega-3s’ profound ability to halt age-related decline and pathology, shattering the long-held medical belief that brain shrinkage and nerve cell death is progressive and irreversible. Omega-3s have been shown to possess antidepressant and neuroprotective properties. 
Omega-3 - Key Nutrient from the Cradle to the Grave
Approximately 8% of the brain’s weight is comprised of omega-3 fatty acids—the building block for an estimated 100 billion neurons.  They play a host of vital roles in neuronal structure and function, protecting them from oxidative damage, inflammation, and the cumulative destruction inflicted by other chronic insults.
Embedded in the omega-3-rich neuronal membrane are numerous proteins and complex molecules required for electrochemical transmission and signal reception.  Scientists have recently shown that the precise balance of fatty acids in brain cells helps determine whether a given nerve cell will be protected against injury or inflammation, or whether it will instead succumb to the injury.
Omega-3s accumulate in the human brain during fetal development. The amount of the omega-3  has been closely tied to intelligence and cognitive performance in infancy and childhood.  Early developmental deficits in brain content of omega-3s have been associated with poor brain maturation and neurocognitive dysfunction.  These are manifested especially in the area of attention, increasing the risk for attention-deficit/hyperactivity disorder (ADHD) and other behavioral disturbances. Later in life, declining levels of Omega-3 fats may contribute to development of aggression, anxiety, depression, schizophrenia, dementia, and a variety of other mental health and even criminal conditions.
Scientists are having great success at reversing many of the fundamental age-related decreases in brain function correlated with omega-3 deficiency.  ADHD and related conditions can be prevented or mitigated by supplementing infants and nursing mothers with Omega-3.   A remarkable animal study has just revealed that omega-3 fatty acids halt the age-related loss of brain cell receptors vital to memory production, and show potential for increasing neuronal growth.
Omega-3 - A Natural Crime Fighter?
Recent findings suggest that some criminal and aggressive behaviors are closely correlated with low serum omega-3 levels, which are linked to lower levels of honesty, and self-discipline. These effects may be related to alterations in serotonin turnover, which controls impulsivity and aggression-hostility behaviors.
There’s solid data indicating that optimal omega-3 intake at all ages is a promising avenue for subduing aggression and hostility.  For example,  omega-3 supplementation in autistic children with severe tantrums, aggression, or self-injurious behavior produced significant improvements compared with placebo, without adverse effects.  And stressed but otherwise healthy volunteers given  Omega-3 Fats  reported a significantly improved rate of stress reduction, suggesting an adaptogenic role for omega-3s (adaptogens help the body respond to imposed stress in a variety of ways).
In a group of drug abusers, supplementation with  Omega-3 Fats 3 months produced significant decreases in anger and anxiety scores compared to placebo recipients. Similarly, in young adult prison inmates, multi-supplements featuring omega-3s produced significant reductions in antisocial, violent, aggressive, and transgressive (rule-breaking) behavior.
Omega-3 – Cures Cognitive Decline and Memory Disorders
Omega-3 intake is strongly associated with many different measures of cognition and memory in numerous studies, and there’s compelling evidence for potent neuroprotection over long time periods.  Insufficient omega-3 intake is strongly correlated with diminished adaptability of brain synapses and impaired learning and memory.  People with lower omega-3 levels may be more likely to suffer from a host of cognitive impairments including dyslexia, ADHD, and cognitive decline.
Laboratory studies shed light on these observations, suggesting that omega-3 supplementation may enhance brain function through increased production of the membrane-rich neurites required for new synapse formation. Other protective and cognition-enhancing effects include improved neuronal cell membrane characteristics resulting in enhanced neurotransmission, increased synaptic release of vital neurotransmitters such as serotonin, and neuroprotection from inflammation and oxidant-related damage including those induced by antipsychotic medications. 
In healthy adults, increased omega-3 intake is positively associated with greater brain volume in regions associated with emotional arousal and regulation of behavior. People who get more omega-3s have bigger, more functional brains.
Summary
Omega-3 fatty acids exert profound anti-aging effects on brain structure and function, from cognition and memory to mental health and Alzheimer’s prevention. They have recently been associated with increased volume of the brain’s gray matter, especially in those regions associated with happiness, and they also boost intelligence through enhanced function from birth onwards. They support brain cell structure, increase the production of vital neurotransmitters and suppress oxidative and inflammatory damage. Diet high in omega-3 fats have been shown to yield significant improvements in symptoms of depression, aggression, and other mental disorders, as well as protection against early cognitive decline and even early memory disorders.

Source of Essential Omega-3 Fats – Flaxseeds
Ways to include flaxseed in home cooking
§  Mix ground flaxseeds into your hot or cold milk.
§  To pump up the nutritional volume of your breakfast shake, add ground flaxseeds.
§  Add flaxseeds to your homemade chapatti or bread recipe.
§  To give cooked vegetables a nuttier flavor, sprinkle some ground flaxseeds on top of them.
§  Add a tablespoon of flaxseed oil to smoothies.
§  How much should be taken in a day - The recommended daily dose for most people are approx. 30-50 gm.

References
1. Conklin SM, Gianaros PJ, Brown SM, et al. Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci Lett. 2007 Jun 29;421(3):209-12.
2. Hibbeln JR, Davis JM, Steer C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007 Feb 17;369(9561):578-85.
3. O’Brien JS, Sampson EL. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965 Oct;6(4):537-44.
4. Chang CY, Ke DS, Chen JY. Essential fatty acids and human brain. Acta Neurol Taiwan. 2009 Dec;18(4):231-41.
5. Robinson JG, Ijioma N, Harris W. Omega-3 fatty acids and cognitive function in women. Womens Health (Lond Engl). 2010 Jan;6(1):119-34.
6. Eckert GP, Franke C, Noldner M, et al. Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res. 2010 Mar;61(3):234-41.
7. De Vriese SR, Christophe AB, Maes M. In humans, the seasonal variation in poly-unsaturated fatty acids is related to the seasonal variation in violent suicide and serotonergic markers of violent suicide. Prostaglandins LeukotEssent Fatty Acids. 2004 Jul;71(1):13-8.
8. McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins LeukotEssent Fatty Acids. 2006 Oct-Nov;75(4-5):329-49.
9. Su HM. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J NutrBiochem. 2010 May;21(5):364-73.
10. Dyall SC, Michael GJ, Whelpton R, Scott AG, Michael-Titus AT. Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol Aging. 2007 Mar;28(3):424-39.
11. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008 Oct 27;1237:35-43.
12. Liperoti R, Landi F, Fusco O, Bernabei R, Onder G. Omega-3 polyunsaturated fatty acids and depression: a review of the evidence. Curr Pharm Des. 2009;15(36):4165-72.
13. Mincke E, Cosyns P, Christophe AB, De Vriese S, Maes M. Lower omega-3 polyunsaturated fatty acids and lower docosahexaenoic acid in men with pedophilia. NeuroEndocrinol Lett. 2006 Dec;27(6):719-23.
14. Fedorova I, Salem N, Jr. Omega-3 fatty acids and rodent behavior. Prostaglandins LeukotEssent Fatty Acids. 2006 Oct-Nov;75(4-5):271-89.
15. Morley JE. Nutrition and the brain. ClinGeriatr Med. 2010 Feb;26(1):89-98.
16. Buydens-Branchey L, Branchey M, Hibbeln JR. Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers. ProgNeuropsychopharmacolBiol Psychiatry. 2008 Feb 15;32(2):568-75.
17. Amminger GP, Schäfer MR, Papageorgiou K, et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry. 2010 Feb;67(2):146-54.
18. Aben A, Danckaerts M. Omega-3 and omega-6 fatty acids in the treatment of children and adolescents with ADHD. TijdschrPsychiatr. 2010;52(2):89-97.
19. Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res. 2010 Mar 24.
20. Hibbeln JR, Ferguson TA, Blasbalg TL. Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: opportunities for intervention. Int Rev Psychiatry. 2006 Apr;18(2):107-18.
21. Kidd PM. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev. 2007 Sep;12(3):207-27.
22. Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry. 2007 Feb 15;61(4):551-3.
23. Bradbury J, Myers SP, Oliver C. An adaptogenic role for omega-3 fatty acids in stress; a randomised placebo controlled double blind intervention study (pilot). Nutr J. 2004 Nov 28;3:20.
24. Gesch CB, Hammond SM, Hampson SE, Eves A, Crowder MJ. Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Randomised, placebo-controlled trial. Br J Psychiatry. 2002 Jul;181:22-8.
25. Zaalberg A, Nijman H, Bulten E, Stroosma L, van der Staak C. Effects of nutritional supplements on aggression, rule-breaking, and psychopathology among young adult prisoners. AggressBehav. 2010 Mar;36(2):117-26.
26. Peet M, Murphy B, Shay J, Horrobin D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry. 1998 Mar 1;43(5):315-9.
27. Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 1999 Mar 22;85(3):275-91.
28. McNamara RK, Hahn CG, Jandacek R, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007 Jul 1;62(1):17-24.
29. Brunner J, Parhofer KG, Schwandt P, Bronisch T. Cholesterol, essential fatty acids, and suicide. Pharmacopsychiatry. 2002 Jan;35(1):1-5.
30. Huan M, Hamazaki K, Sun Y, et al. Suicide attempt and n-3 fatty acid levels in red blood cells: a case control study in China. Biol Psychiatry. 2004 Oct 1;56(7):490-6.
31. Sublette ME, Hibbeln JR, Galfalvy H, Oquendo MA, Mann JJ. Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am J Psychiatry. 2006 Jun;163(6):1100-2.
32. Jazayeri S, Tehrani-Doost M, Keshavarz SA, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry. 2008 Mar;42(3):192-8.
33. Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. EurNeuropsychopharmacol. 2003 Aug;13(4):267-71.
34. da Silva TM, Munhoz RP, Alvarez C, et al. Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord. 2008 Dec;111(2-3):351-9.
35. Su KP, Huang SY, Chiu TH, et al. Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2008 Apr;69(4):644-51.
36. Lucas M, Asselin G, Merette C, Poulin MJ, Dodin S. Ethyl-eicosapentaenoic acid for the treatment of psychological distress and depressive symptoms in middle-aged women: a double-blind, placebo-controlled, randomized clinical trial. Am J ClinNutr. 2009 Feb;89(2):641-51.
37. Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH. Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry. 2006 Jun;163(6):1098-100.
38. Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry. 2003 Dec;160(12):2222-7.
39. Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL. Long-chain omega-3 polyunsaturated fatty acids in the blood of children and adolescents with juvenile bipolar disorder. Lipids. 2008 Nov;43(11):1031-8.
40. McNamara RK, Jandacek R, Rider T, et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 2008 Sep 30;160(3):285-99.
41. Stoll AL, Severus WE, Freeman MP, et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry. 1999 May;56(5):407-12.
42. Hirashima F, Parow AM, Stoll AL, et al. Omega-3 fatty acid treatment and T(2) whole brain relaxation times in bipolar disorder. Am J Psychiatry. 2004 Oct;161(10):1922-4.
43. Chiu CC, Huang SY, Chen CC, Su KP. Omega-3 fatty acids are more beneficial in the depressive phase than in the manic phase in patients with bipolar I disorder. J Clin Psychiatry. 2005 Dec;66(12):1613-4.
44. Osher Y, Bersudsky Y, Belmaker RH. Omega-3 eicosapentaenoic acid in bipolar depression: report of a small open-label study. J Clin Psychiatry. 2005 Jun;66(6):726-9.
45. Montgomery P, Richardson AJ. Omega-3 fatty acids for bipolar disorder. Cochrane Database Syst Rev. 2008 (2):CD005169.
46. Kraguljac NV, Montori VM, Pavuluri M, Chai HS, Wilson BS, Unal SS. Efficacy of omega-3 fatty acids in mood disorders - a systematic review and metaanalysis. Psychopharmacol Bull. 2009;42(3):39-54.
47. Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL. Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur J ClinNutr. 2009 Aug;63(8):1037-40.
48. Turnbull T, Cullen-Drill M, Smaldone A. Efficacy of omega-3 fatty acid supplementation on improvement of bipolar symptoms: a systematic review. Arch PsychiatrNurs. 2008 Oct;22(5):305-11.
49. McNamara RK. Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations. Prostaglandins LeukotEssent Fatty Acids. 2009 Aug-Sep;81(2-3):223-31.
50. Carrie I, Abellan Van Kan G, Rolland Y, Gillette-Guyonnet S, Vellas B. PUFA for prevention and treatment of dementia? Curr Pharm Des. 2009;15(36):4173-85.
51. Cole GM, Ma QL, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins LeukotEssent Fatty Acids. 2009 Aug-Sep;81(2-3):213-21.
52. Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat ClinPract Neurol. 2009 Mar;5(3):140-52.
53. Heinrichs SC. Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. MolNutr Food Res. 2010 Apr;54(4):447-56.
54. Laasonen M, Hokkanen L, Leppamaki S, Tani P, Erkkila AT. Project DyAdd: Fatty acids and cognition in adults with dyslexia, ADHD, or both. Prostaglandins LeukotEssent Fatty Acids. 2009 Jul;81(1):79-88.
55. Sumich A, Matsudaira T, Gow RV, et al. Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder. Neuropharmacology. 2009 Dec;57(7-8):708-14.
56. Vercambre MN, Boutron-Ruault MC, Ritchie K, Clavel-Chapelon F, Berr C. Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr. 2009 Aug;102(3):419-27.
57. Wurtman RJ, Cansev M, Sakamoto T, Ulus IH. Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr. 2009;29:59-87.
58. Wurtman RJ, Cansev M, Ulus IH. Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J Nutr Health Aging. 2009 Mar;13(3):189-97.
59. Barcelos RC, Benvegnu DM, Boufleur N, et al. Effects of omega-3 essential fatty acids (omega-3 EFAs) on motor disorders and memory dysfunction typical neuroleptic-induced: behavioral and biochemical parameter. Neurotox Res. 2010 Apr;17(3):228-37.
60. Antypa N, Van der Does AJ, Smelt AH, Rogers RD. Omega-3 fatty acids (fish-oil) and depression-related cognition in healthy volunteers. J Psychopharmacol. 2009 Sep;23(7):831-40.
61. Fiala M. Re-balancing of inflammation and abeta immunity as a therapeutic for Alzheimer’s disease-view from the bedside. CNS Neurol Disord Drug Targets. 2010 Apr;9(2):192-6.
62. Fiala M. Re-balancing of inflammation and abeta Immunity as a therapeutic for Alzheimer’s disease-view from the bedside. CNS Neurol Disord Drug Targets. 2010 Mar 5.
63. Vedin I, Cederholm T, Freund Levi Y, et al. Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am J ClinNutr. 2008 Jun;87(6):1616-22.
64. Vedin I, Cederholm T, Freund-Levi Y, et al. Reduced prostaglandin F2 alpha release from blood mononuclear leukocytes after oral supplementation of omega-3 fatty acids: the OmegAD study. J Lipid Res. 2010 May;51(5):1179-85.
65. Irving GF, Freund-Levi Y, Eriksdotter-Jonhagen M, et al. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer’s disease: the omega-3 Alzheimer’s disease study. J Am Geriatr Soc. 2009 Jan;57(1):11-7.
66. Yurko-Mauro K. Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr Alzheimer Res. 2010 May 1;7(3):190-6.
67. Florent-Bechard S, Desbene C, Garcia P, et al. The essential role of lipids in Alzheimer’s disease. Biochimie. 2009 Jun;91(6):804-9.
68. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006 Oct;63(10):1402-8.
69. Chiu CC, Su KP, Cheng TC, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. ProgNeuropsychopharmacolBiol Psychiatry. 2008 Aug 1;32(6):1538-44.
70. Ma QL, Yang F, Rosario ER, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009 Jul 15;29(28):9078-89.

Science of memory



Science of memory
Memories are the internal mental records that we maintain, which give us instant access to our personal past, complete with all of the facts that we know and the skills that we have cultivated. The following are primary stages of the human memory process.
  •          Encoding
  •      Storage
  •      Retrieval
  •      Forgetting may constitute the fourth stage of memory, although forgetting is technically a setback in memory retrieval. 

During the encoding stage, information is sent to the brain, where it is dissected into its most significant composing elements. Some group of brain cells processes incoming stimuli and translates that information into a specialized neural code. In the storage stage of memory formation, the brain must retain encoded data over extended periods of time. Retrieval stage constitutes the right of entry into the infinite world of stored information, where we bring old information out of permanent memory back into working memory, which can be mentally manipulated for usage. 
Science of Memory –
Learning is an active process that involves sensory input to the brain, which occurs automatically, and an ability to extract meaning from sensory input by paying attention to it long enough to reach working (short-term) memory, where consideration for transfer into permanent (long-term) memory takes place.
Vision has a much longer history in the human experience than does the printed word. By exploiting this competency, students learn quickly when they can visualize the concept while studying, by directed use of the mind’s eye, where mental pictures can be developed. 
Writing words in the air on an imaginary blackboard forces students not only to visualize the order of letters in a word, but to maintain visually what they have already written in working memory as they continue to write. When young learners are taught to construct diagrams that show relationships, their memory of content improves substantially.
Once the elements that make up an experience are classified according to their special traits, each part is shunted to a different brain region for further detailed analysis. The various pieces of new information get stored in neural circuits distributed throughout the cerebral cortex. Because the elements making up a memory reside in multiple cortical areas, the stronger the network linking the associated pieces together, the more resistant to it will be to forgetting.
As the brain transacts learning events, physical changes occur both within brain circuitry and in its structure-function correlations.  Memory is quite fluid, and, over time, the brain continues to revisit and reorganize stored information with each subsequent experience, reprogramming its contents through a repetitive updating procedure known as brain plasticity. This is advantageous, since improvements are made repeatedly to existing data. Prior knowledge is revised based on new input, resulting in a more accurate representation of the current world, increasing one’s probability of thriving. 
The relationship between learning and memory
While memory cannot occur without learning, once information has been learned, our memory may allow the learning to decay.  Stress and multitasking are among the chief causes of memory lapses.  Memory failure most likely reflects the consequences of stress, poor nutrition and exhaustion.
Emotions  
Emotions can be a catalyst to learning. In school, mere exposure to content information (lecture, text, etc.) is no guarantee that it will reach the personal/emotional threshold of “personal importance” to the learner, where encoding the information for permanent memory storage is deemed warranted. What students encode depends on what they are paying attention to at the time. Although we often wonder why our students forget important lesson content, the bigger problem is, Was it ever encoded for memory?
Hippocampus – The Site for Memory Building
Several connected brain regions play key roles in memory formation, including the thalamus, amygdala, hippocampus and cerebral cortex. It is the interaction of nearly all parts of the brain that allows for the construction of our memories.
The hippocampus plays a crucial role in forming and storing our memories of facts and events. Initially, short-term memories are briefly stored in the hippocampus, prior to being transferred to other brain regions where they are consolidated with prior knowledge into long-term memories. While persistent stress can damage hippocampal brain cells, patterns, emotions, relevance, context, content and sense-making boost attention, memory formation and recall. Collectively, they can determine what information reaches permanent memory storage. As Stanford Ericksen summarized the requisite emotional element in learning, “Students learn what they care about and remember what they understand.”
When information is determined to have potential long-term value, the hippocampus links the significant elements of that event or experience together, forming a permanent memory. Brain-imaging studies have shown heightened activations in the hippocampus not only when we are recalling memories but also when we put the mind on “wander and wonder.” This has important implications concerning creativity and innovation, which are based on our ability to manipulate and expand on stored factual information.
Emotional experiences (both positive and negative) enjoy the highest probability of reaching permanent memory storage. It is the amygdala-hippocampus connection that fosters the development of our most memorable moments in life. In the classroom, emotions determine what students pay attention to, which impacts what students will later remember.
Mnemonics help    
When attempting to memorize unrelated terms, mnemonics present the most practical solution. For students attempting to remember the most important neurotransmitters, the term “San Dope” works effectively.
§  Serotonin 5-Hydroxytryptamine
§  Acetylcholine 
§  Norepinephrine 
§  Dopamine
§  Oxytocin
§  Phenylethanolamine 
§  Epinephrine (adrenaline)